Description
Calculate the eigen vectors of a numRows by numCols matrix rowMajorSymMatrix. The eigen vector is stored in eigenVectors.
This function has been Deprecated. Please use Matrix.EigenDecomposition(Matrix,Matrix) instead.
Timing Precision Mode
This page describes functionality in millisecond timing precision mode. Millisecond timing precision mode is deprecated and will be removed in a future release. We recommend that you migrate your Mission Plans to nanosecond timing precision mode.
Function Signature
Arguments
rowMajorSymMatrix
|
|
Description:
|
A row-major symmetric matrix.
|
numRows
|
|
Description:
|
The number of rows in the matrix.
|
Valid Range:
|
numRows > 0
|
numCols
|
|
Description:
|
The number of columns in the matrix.
|
Valid Range:
|
numCols > 0
|
eigenVectors
|
|
Description:
|
The array to store the calculated eigen vectors.
|
Return Value
Returns number of unique eigen vectors.
Syntax
myVariable1 = EigenVector(myArray1, myVariable2, myVariable3, myArray2);
|
This example calculates the Eigen vectors of the Spacecraft's attitude. Note: SymmetricMatrix and EigenVecs are 9-element arrays in this example.
Array SymmetricMatrix[9];
Array EigenVecs[9];
SymmetricMatrix = {Spacecraft1.AttitudeMatrix11,
Spacecraft1.AttitudeMatrix12,
Spacecraft1.AttitudeMatrix13,
Spacecraft1.AttitudeMatrix21,
Spacecraft1.AttitudeMatrix22,
Spacecraft1.AttitudeMatrix23,
Spacecraft1.AttitudeMatrix31,
Spacecraft1.AttitudeMatrix32,
Spacecraft1.AttitudeMatrix33};
Variable numEigenVecs = EigenVector(SymmetricMatrix, 3, 3, EigenVecs);
Report SymmetricMatrix, numEigenVecs, EigenVecs;
|
Output:
SymmetricMatrix
|
{0.239154924, 0.968353162, 0.071393805,
-0.804101914, 0.156301579, 0.573576436,
0.544265592, -0.194581524, 0.816034923}
|
numEigenVecs
|
3.000000000
|
EigenVecs
|
{-0.636989681, 0.737108187, -0.225645004,
0.572216989, 0.255987245, -0.779126593,
0.516538347, 0.625413505, 0.584847060}
|
|
See also
EigenVector
|